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Abstract 
Semiconductor technological advances in the recent years have led to the inclusion of 
multiple CPU execution cores in a single processor package. This processor architecture 
is known as Multi-core (MC) or Chip Multi Processing (CMP). 
 
Any application which is well optimized and scales with SMP will take immediate benefit 
of the multiple execution cores, provided by the Multi-core architecture. Even if the 
application is single-threaded, multi-tasking environment will take advantage of these 
multiple execution cores.  
 
2.6 Linux kernels (which have better SMP scalability compared to 2.4 kernels) take 
instant advantage of the MC architecture. MC also brings in performance optimization 
opportunities which will further enhance the performance. 
 
This paper captures the recent enhancements to the 2.6 Linux Kernel which better 
support and enhance the performance of Multi-core capable platforms. 

1. Introduction 
 
In Multi-core processor based platforms, more than one execution core reside in a physical 
package. Each core has its own resources (architectural state, registers, execution units, some or 
all levels of caches, etc.). Shared resources between the cores in a physical package vary 
depending on the implementation. Typical MC implementations share the last level cache and the 
front side bus (FSB) resources. 
 
Duplicate execution resources in MC capable processors, allow parallel execution of the 
application threads and hence offer significantly greater concurrency. MC capable processors 
also offer greater system density, and performance per watt compared to the single core 
processor packages that they replace. Consequently, they are poised to bring new levels of 
performance and scalability. Most of the programming challenges for multi-core environment 
emanate from SMP environment. Enhancements that have gone into 2.6 Linux Kernel for 
improving SMP scalability greatly help in MC environment too. However the presence of shared 
resources (e.g. last level cache, front side bus resources, power management states, etc 
between CPU cores residing in a physical package) in MC environment, brings in additional 
challenges. Addressing these challenges will lead to lower shared resource contention and 
improvement in the peak performance. 
 
Section 2 will look into the Multi-core topology identification mechanism in 2.6 Linux Kernel. 
Section 3 will look into the 2.6 Linux Kernel scheduler and talks about the Multi-core related 
scheduler enhancements. Finally the paper will close with a summary. 
 
2. Detecting Hardware Multi-threading and Multi-core topology in 2.6 Linux 
  



Multiple logical threads (HT) or execution cores (MC) in a physical package appear to the 
operating system as multiple logical processors (similar to SMP environment). For example, Dual-
Core Intel Xeon® processor 7100 series provides four logical processors for each physical 
package in the platform, as it is a dual-core processor with HT Technology enabled. 
 
Linux kernel exports the multi-threading and multi-core topology to the applications using two 
mechanisms. Applications can use the topology information for number of purposes such as 
application licensing, binding application threads/processes to a specific group of 
threads/cores/physical packages to achieve peak throughput.  
 
2.1 Exporting through ‘proc’ file system: 
 
/proc/cpuinfo contains information about the different CPUs in the system. This proc file also 
exports the multi-threading and multi-core topology information as seen by the OS. This is the 
legacy mechanism of exporting topology information to the user, which started initially when 
Hyper-threading got introduced. 
 
"ht" in 'flags' field of /proc/cpuinfo indicate that the processor supports the Machine Specific 
Registers to report back HT or multi-core capability. Additional fields (listed down below) in the 
CPU records of /proc/cpuinfo will give more precise information about the CPU topology as seen 
by the operating system. 
 
 "physical id" Physical package id of the logical CPU 
 "siblings" Total number of logical processors(includes both threads and cores) in the 

physical package  currently in use by the OS 
 "cpu cores" Total number of cores in the physical package currently in use by the OS 
 "core id" Core id of the logical CPU 
 
Legacy HT optimized applications parse "ht" flag and "physical id", "siblings" fields in 
/proc/cpuinfo for identifying physical packages in the system. This package identification will be 
used for example in application licensing purposes or in binding a process to a specific physical 
package. These applications require no change and will work as it is on a multi-threaded and/or 
multi-core system if they require only the logical CPU to a physical package mapping. 
  
To identify if the physical package is purely multi-threaded or purely multi-core capable or both, 
then in addition to the "ht" flag, applications need to parse all the above mentioned fields. 
Following logic can be used to identify the CPU capabilities as seen by the OS. 
 
"siblings == cpu cores >= 2"  

- Indicates that the physical package is multi-core capable and is not Hyper-threading 
capable 

 
"siblings >= 2" && "cpu cores == 1" 

- Indicates that the physical package is Hyper-threading capable and has one cpu core 
 
"siblings > cpu cores > 1" 
 - Indicates that the physical package is both Hyper-threading and multi-core capable 
 
To build the complete topology of which logical cpus belong to which CPU core and/or physical 
package, application need to parse "physical id" and "core id" fields.  For two logical cpus, if both 
these ids are same, then they belong to same core (Hyper-Threading siblings). If they have same 
physical package id and different core id, then they belong to same physical package (core 
siblings). 
 
2.2 Exporting through ‘sysfs’ file system 
 



More recent Linux Kernels [LK] (like 2.6.17) have the CPU topology exported in sysfs as well. 
This mechanism is simpler and faster compared to the previously mentioned /proc interface. 
Below listed fields exported under /sys/devices/system/cpu/cpuX/topology/ provide the complete 
topology information. 
 
physical_package_id Physical package id of the logical CPU 
core_id   Core id of the logical CPU 
core_siblings  Siblings mask of all the logical CPUs in a physical package 
thread_siblings  Siblings mask of all the logical CPUs in a CPU core 
 
Hamming Weight (number of bits set) of siblings mask will give the physical package capabilities. 
 
“HW(core_siblings) == HW(thread_siblings) >= 2” 
 - Indicates that the physical package is Hyper-threading capable and has one cpu core 
“HW(core_siblings) >= 2” && “HW(thread_siblings) == 1” 

- Indicates that the physical package is multi-core capable and is not Hyper-threading  
capable 

“HW(core_siblings) > HW(thread_siblings) > 1” 
 - indicates that the physical package is both Hyper-threading and multi-core capable 

3. 2.6 Linux Process Scheduler 
 
The most significant change in 2.6 Linux Kernel which improved scalability in multi processor 
system was in the kernel process scheduler. The design of Linux 2.6 scheduler is based on per 
cpu runqueues and priority arrays, which allow the scheduler perform its tasks in O(1) time. This 
mechanism solved many scalability issues but the scheduler still didn’t perform as expected on 
Hyperthreaded systems and on higher end NUMA systems. In case of Hyper-threading, more 
than one logical CPU shares the processor resources, cache and memory hierarchy. And in case 
of NUMA, different nodes have different access latencies to the memory. These non uniform 
relationships between the CPUs in the system pose significant challenge to the scheduler. 
Scheduler must be aware of these differences and the load distribution needs to be done 
accordingly. 
 
To address this, 2.6 Linux kernel scheduler introduced a concept called scheduling domains [SD]. 
2.6 Linux kernel used hierarchical scheduler domains constructed dynamically depending on the 
CPU topology in the system. Each scheduler domain contains a list of scheduler groups having a 
common property. Load balancer runs at each domain level and scheduling decisions happen 
between the scheduling groups in that domain. On a high end NUMA system with processors 
capable of Hyper-threading, there will be three scheduling domains, one each for HT, SMP and 
NUMA. 
 
In the presence of Hyperthreading, when the system has fewer tasks compared to number of 
logical CPUs in the system, scheduler must distribute the load uniformly between the physical 
packages. This distribution will avoid scenarios in the system where one physical package has 
more than one logical CPU busy and another physical package is completely idle. Uniform load 
distribution between physical packages will lead to lower resource contention and higher 
throughput. Presence of Hyperthreading scheduler domain will help the scheduler achieve the 
equal load distribution between the physical packages. 
 
Similarly the NUMA scheduling domain will help in unnecessary task migration from one node to 
another. This will ensure that the tasks will stay most of the time in their home (where the task 
has allocated most of its memory) node. 
 
3.1 MC aware Linux Kernel Scheduler: 
 



2.6 Linux Kernel domain scheduler up to 2.6.16, is aware of three different domains representing 
HT, SMP and NUMA. On a MC system, Linux kernel which has multi-core detection capabilities 
will place cpu cores and physical packages in SMP scheduler domain. So is a new scheduler 
domain representing MC [OLS2005] required? Following sections will answer this question. 
 
3.1.1 Opportunities for improving peak performance: 
 
In a MC implementation where there are no shared resources between cores sharing a physical 
package, cores are very similar to individual cpu packages found in a multi-processor 
environment. OS scheduler doesn't have to do anything more in this case as far as performance 
is concerned.  
 
However, in most of the MC implementations, to make best use of the resources and to make 
inter core communication more efficient, cores in a physical package will share some of the 
resources(for example Intel® Core™ Duo processor  has two CPU cores sharing the L2 Intel® 
Smart Cache[CACHE]). In this case, the kernel scheduler should schedule tasks in such a way 
that it minimizes the resource contention, maximizes the resources utilization and maximizes the 
system throughput. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: MC implementation with Shared L2cache and Bus interface. 
 
Let's consider a hypothetical system with two physical packages in the system, with a common 
FSB. Let us assume that each package has two cores sharing the last level cache and FSB 
queue. Let us further assume that we have two runnable, totally independent, tasks to schedule 
and the scheduler schedules two tasks to package 0, leaving package 1 idle. In this scenario, 
tasks scheduled on package 0 will contend for last level cache shared between cores, resulting in 
lower throughput. Also resources in package 1 are left unutilized. This scheduling decision isn't 
quite right from the resource utilization perspective. 
 
The best possible scheduling decision will be to schedule two tasks on two different packages. 
This will result in each task having independent, full access to last level shared cache in the 
package and fair share of the FSB Bandwidth leading to proper resource utilization. 
 
So in the case where the cores in a package share resources and when the system is lightly 
loaded, scheduler needs to distribute the load equally among all the packages to achieve peak 
performance. 
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3.1.2 Opportunities for improving power savings: 
 
Power management is a key feature in today's processors across all market segments. Different 
power saving mechanisms like P-states and C-States are being employed to save more power. 
Advanced Configuration and Power Interface (ACPI) [ACPI] defines the power state of 
processors (C0,C1,C2,C3,...Cn). The C0 power state is an active power state where the CPU 
executes instructions. The C1 through Cn power states are processor sleeping(/idle) states where 
the processor consumes less power and dissipates less heat. 
 
While in the C0 state, ACPI allows the performance of the processor to be altered through 
performance state(P-state) transitions. While most people think of P states in terms of reducing 
the frequency of the processor when not fully busy, in reality it’s a more complex combination of 
reduced frequency and voltage. Using these P states, a CPU can consume different amounts of 
power while providing different performance at C0 (running) state. At a given P-state, cpu can 
transit to higher C-states in idle conditions. In general, higher the P and C-states, the lesser will 
be power consumed, heat dissipated. 
 
MC implications on P and C-states: 
 
P-states: 
 
In a MC configuration, typically all cores in one physical package will share the same voltage; 
there is only one voltage regulator per socket present on the motherboard. Hence P-state 
transitions (which impact both frequency and voltage) for all the cores need to happen at the 
same time. This coordination of P-states between cores can be either implemented by hardware 
or software. With this mechanism, P-state transition requests from cores in a package will be 
coordinated, causing the package to transition to target state when the transition is guaranteed to 
not lead to incorrect or non-optimal performance state. If one core is 100% busy running a task, 
this coordination will ensure that other idle cores in that package can't enter low power P-states, 
resulting in the complete package at the highest power P-state for optimal performance. In 
general, this coordination will ensure that a Processor package frequency will be the numerically 
lowest P-state (highest voltage and frequency) among all the logical processors in the Processor 
package. 
 
C-states: 
 
In a typical MC configuration, processor package can be broken up into different blocks. One 
block for each execution core and one common block representing the shared resources between 
all the cores. Since cores operate independently, each core block can independently enter a c-
state. For example, one core can enter C1 or C2 while the other executes code in C0. The 
common block will always reside in the numerically lowest(highest power) C-state of all the cores. 
For example, if one core is in C2 and other core is in C0, shared block will reside in C0. 
 
Scheduling policy for power savings: 
 
Let's take the same hypothetical system which was considered before, having two physical 
packages with each package having two cores sharing the last level cache and FSB resources. If 
we have two runnable tasks, as observed in the previous section, peak performance will be 
achieved when these two tasks are scheduled on different packages. But, because of the P-state 
coordination, we are restricting other idle cores in both the packages to run at higher power P-
state. Similarly the shared block in both the packages will reside in higher power C0 
state(because of one busy core). This will result in non-optimal performance from power saving's 
perspective. 
 
Instead, if the scheduler picks the same package for both the tasks, other package with all cores 
being idle, will transition slowly into the lowest power P and C-state, resulting in more power 



savings. But as the cores share last level cache, scheduling both the tasks to the same package, 
will not lead to optimal behavior from performance perspective. Performance impact will depend 
on the behavior of the tasks and shared resources between the cores. In this particular example, 
if the tasks are not memory/cache intensive, performance impact will be very minimal. In general, 
we can save more power with relatively smaller impact on performance by scheduling them on 
the same package. 
 
3.2 Scheduler domain for MC: 
 
For implementing the above mentioned performance and power savings policies, Linux kernel 
scheduler needs to differentiate between cpu cores and physical packages. A new scheduler 
domain representing MC will achieve this differentiation and will enable these scheduler policies. 
 
MC Scheduler domain representing shared last level cache between CPU cores is added in 
2.6.17 Linux kernel. Figure 2 demonstrates default peak performance scheduling policy which is 
present in 2.6.17 Linux kernel. 4 tasks are running on a system having two physical packages, 
each having two cores (sharing last level cache) and each core having two logical threads. Load 
balance kicks in at the MC domain for the first package, resulting in equal load distribution among 
the cores. 
 

 
 
Figure: 2 Demonstration of MC Scheduler Peak Performance policy on a DP system with 
each physical package having two execution cores and each core having two logical 
threads. 
 
MC power savings policy is added in Linux 2.6.18-rc1. sysfs entries 'sched_mc_power_savings' 
and 'sched_smt_power_savings' in /sys/devices/system/cpu/ control the multi-core/multi-
threading power savings policy for the scheduler. When power savings policy is enabled and 
under light load conditions, scheduler will minimize the physical packages/cpu-cores carrying the 
load and thus conserving power (with a performance impact based on the workload 
characteristics) 
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Figure 3 demonstrates load balance for improved power savings with 4 tasks, on a system having 
two physical packages, each having four cores. Load balance kicks in between the two physical 
packages, resulting in movement of the complete load to one physical package, resulting in 
improved power savings with a performance impact which will depend on the behavior of the 
tasks and shared resources between the cores. 
 

 
Figure 3: Demonstration of MC Scheduler Power savings policy on a DP system 
with each physical package having four execution cores. 

4.  Summary 
 
Operating systems and Applications which scale well with large number of CPUs in SMP 
environment will take instantaneous benefit of Multi-core architecture. Applications can use the 
core and thread topology information exported by the OS for licensing and other purposes like 
task binding. With number of cores per physical package and the shared resources between 
them increase, kernel scheduler optimizations discussed in this article will become critical. 
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